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‡Centre de Ressource Autisme, Université de Nice, Fondation Lenval, F-06200, Nice, France

§Genious Healthcare, F-34000, Montpellier, France
¶Ecole Centrale de Lyon, LIRIS, F-69134, Lyon, France
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Abstract—Being able to produce facial expressions (FEs) that
are adequate given a social context is key to harmonious social
development, particularly in the case of children plagued with
autism spectrum disorder (ASD). In this paper, we introduce
JEMImE, a serious game solution that aims at teaching
children how to produce FEs. JEMImE is based on a FE
recognition module that is learned on a large video corpus
of children performing FEs. This module is validated and
incorporated through multiple scenarios of gradual difficulty,
ranging from a training phase where children have to perform
the FEs on request, with or without an avatar model, to an
in-context phase that involves many emotion-eliciting social
situations with virtual characters.

Keywords-Facial expression recognition, serious game,
autism spectrum disorders, emotion production

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder that affects communication and socialization of in-
dividuals with deficits in social emotion reciprocity, in non-
verbal communication and in developing and maintaining
relationships. All these social skills are important in enabling
a person to achieve social competence [1] and are factors of
integration in the society at all ages of life. Among them,
emotional skills are essential to communicate our emotions
to others and to adapt our behavior according to their
reaction. Within these emotional skills, facial expressions
(FEs) are key components of emotional signal and allow
people to express and understand emotions [2]. Their correct
recognition and production is essential. Moreover, they have
to be adapted to the social context, requiring people to
take care of the situation and social rules that apply to it
[3]. Teaching social skills to individuals with ASD is a
considerable challenge. Recently, many studies have con-
sidered the use of information communication technologies
(ICTs) in therapy [4]. In fact, some studies showed that ICTs
improve interest and motivation of children with ASD [5].

ICTs present information in a sequential way, making them
predictable and reassuring [6]. Moreover, they allow working
on social skills thanks to virtual environment allowing the
therapist to place the child in many different situations close
to reality but in a safe place [7]. The review of Grynszpan
et al. (2014) [8] reports that results of intervention based
on ICTs are promising. In a recent review [9], 31 serious
game solutions were identified that aim at teaching social
skills to people with ASD. Among them, there are only 4
games that deal with targeted FE production (LifeIsGame,
CopyMe, SmileMaze, and the serious game of Park et al.
(2012)) [10], [11], [12], [13]. Only the game LifeIsGame
includes emotion production exercises in a social context
with no visual support while the others games proposed
only to work on FEs without linking these to a social
environment. None of these games includes a feedback
of the facial expression produced by the player; however,
feedback on the facial production improves the capability
of self-correction for people with and without ASD [14].
There was no assessment conducted in order to evaluate the
efficiency of the interventions; only 2 games were proposed
to children with ASD, but without evaluating their progress
after playing. A summary of these contributions can be
found in Table I.

Regarding the gameplay of these 4 games, they seem
not to fully exploit the potential of ICTs. Only LifeIs-
Game proposes a dynamic support with a virtual avatar.
The other games use 2D and static supports, which could
be presented on paper. Moreover, playful aspects such as
rewards are not always present to increase the urge to play.
The personalization possibilities of the player’s character are
limited, which further limits the interest in the game. To
wrap it up, only a handful of games exist for the purpose
of teaching FE production, and they do not use all the
entertainment characteristics of a game, which is critical to
motivate the children to play in the first place. Moreover,
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Table I
SUMMARY OF GAMES TEACHING FACIAL EXPRESSION PRODUCTION

game support clinical study main results feedback on FE
quality

CopyMe [12] Pictures of real
persons

Game was used with children aged
8 to 10 years in a childcare centre
in Sydney. However, no assessment
was reported.

No No

LifeIsGame [11] 3D avatar Only a qualitative assessment of
the design by 9 participants. No
evaluation.

Participants enjoyed playing this
game. The children seemed to
match images more than they
recognised expressions.

No

SmileMaze [13] Smileys No Informal field-testing showed that
children with ASD enjoy playing
the game.

No

Theory driven
serious game
framework [10]

Photos and writ-
ings

No No No

they do not offer enough information (such as feedback on
players productions, or taking into account social situations)
to help the child producing suitable FEs.

I. JEMIME OVERVIEW

JEMImE is a French acronym that stands for “educative
multimodal game for emotional imitation”. The goal of this
project is to develop a serious-game platform on which
children with ASD can receive feedback on the expression
that they display, so as to produce FEs adequately, given a
social context. The proposal of adding a feedback regarding
FE follows a clinical study conduct with a sister game
JeSTIMULE based on the same principals but without
feedback [15] A lot of emphasis is put into developing
a fun environment to create an incentive for the children
to be interested in the game, with appealing visuals and
thorough personalization possibilities (see Section V). By
doing so, we hope improving playability of the serious game
[16]. The game is primarily geared towards being used by
ASD children aged from 6 to 12 years old. An overall
flowchart of this game is shown on Figure 1. First and
foremost, we have gathered and labeled a large database
of videos depicting typical children’s FEs (Section II). For
each video, during an offline phase, we extract a number
of frames that we use to feed a machine learning algorithm
(see Section III), which extract low-level features and map
those features to the corresponding FE label. The learned
predictive model are validated (Section IV), then can be
used as a FE recognition module and integrated into the
serious game solution (Section V). While playing, a child
can go through multiple modes to try and learn to produce
FEs with gradual difficulty, by first imitating and producing
FEs on request, then by producing FEs adequately given a
specific scenario in a virtual environment.

II. GATHERING THE DATABASE

A. Data collection

A total of 157 volunteer children aged between 6 and
11 years were recorded in Paris (63 children) and Nice (94
children). Among this pool of children, 52% were boys and
48% girls. Moreover, 77% were Caucasian, 8.3% Black-
African, 7% Asian and 7% Nord-African. Each child was
asked to produce 4 facial expressions: neutral, happiness,
anger and sadness following two tasks: the on request and
imitation FE production tasks.

More specifically, children were put in front of a computer
that was recording the emotional display. An examiner stand
behind this screen in order to encourage children to keep
their heads in front of the screen. For the on request task, the
screen was explicitly displaying the FE that the child had to
produce (“can you show me happiness?”). For the imitation
task, the child was presented an avatar displaying the desired
FE, and was asked to imitate it. Each child was asked to
perform each FE 6 times total, 2 times for the on request
task and 4 times for the imitation task, each corresponding
to either visual or audiovisual modalities, and with avatars
of both genders. The modality and avatar presentation order
were randomized to avoid any learning effect. Children were
roughly 1 meter away from the recording sensor, hence the
face crops are approximately 300× 400 pixels.

B. Annotation and extraction

Thus, each child was recorded 24 times in total, making
a total of 3768 videos of 3s average length. As explained in
Section I, the JEMImE project is geared towards assessing,
through a serious game platform, whether the FEs produced
by children with ASD are adequate given a social context.
Therefore, we not only have to recognize FEs produced by
children, but also to guess to what extent the recognized FE
is credible.

For that matter, 3 judges blindly labeled the videos in
terms of FE quality. FE quality was measured on a 0-
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Figure 1. Overall flowchart of JEMImE development. First, during an offline phase (top row), we extract high-dimensional, low-level facial features and
train a predictive model using machine learning techniques. This model learns a mapping between the features and the corresponding facial expression
labels. Then, this predictive model is applied to the raw video stream of a child playing JEMImE in front of the camera, and provide feedback on the
child’s expressions in real-time.

10 continuous interval with the following convention: a 0
corresponds to an unrecognized FE, a 5 corresponds to
a recognized but not credible FE, and a 10 corresponds
to a completely credible and well identified FE. While
training regressors to directly model the quality of FEs is an
interesting research direction that will be addressed in future
works, in this study we extract only a subset of videos for
which the FE quality is superior or equal to 7. The reason
for this is that we consider that a suitable expression display
for one child (and, ultimately, a child with ASD) shall look
similar to a high-quality (i.e. well recognized, and credible)
FE produced by typical children.

For each video, we converted the first frame to grayscale
levels, and applied OpenCV Viola & Jones face detector
[17]. Then, we applied the intraface feature point tracker
[18] to locate a set of 49 feature points. Then, we tracked
the feature points on the remaining frames of the video.
We selected the last frame of each video for training and
testing the FER models, as it usually depicted the peak
(apex) of the FE. We discarded some videos for which the
feature point tracker could not follow the head motion and
extracted a total of 1458 images for children from Paris and
2323 images from Nice, each associated to a FE quality
label, a children ID number and a set of aligned feature
points. In what follow, we respectively refer to those datasets
as JEMImE-Paris and JEMImE-Nice. The concatenation of
those two datasets is referred as JEMImE-All (3781 images
total).

The data repartition for JEMImE-All is showed on Table

Table II
EXPRESSION LABEL REPARTITION (%) FOR JEMIME-ALL

Expression Repartition(%)
Neutral 36.5
Happiness 28.5
Anger 21.5
Sadness 13.5

II, in terms of FE labels and FE qualities, respectively. As it
can be seen on Table II, the database is heavily imbalanced
in favor of classes neutral as compared to anger and sadness,
as there are roughly 3 times more examples of the former
than of the latter. Thus the proposed FER pipeline shall be
adapted to be robust to data imbalanced to a certain extent.

III. DISCRIMINATING CHILDREN’S FACIAL EXPRESSIONS

A traditional FER pipeline consists in first extracting a
set of candidate features upon which a prediction model
can be trained. As it will be discussed in the following
subsections, we use random forests (RFs) for the purpose
of classifying or regressing the facial expressions. This RF
framework allows to generate a large pool of features on-the-
fly at the node level (Section III-A). Relevant features among
those large collections are then selected by minimizing a
purity criterion. To perform FER, we essentially extract
heterogeneous features (i.e. geometric and appearance) from
multiple generic templates, as it provide high-end accuracies
on multiple state-of-the-art databases [19].



A. Facial feature extraction from multiple templates

Each of these feature templates φ(i) have different input
parameters that are randomly generated during training.
More specifically, for each template φ(i), the upper and
lower bounds are estimated from the training data and
candidate thresholds are sampled from uniform distributions
within this range. Those features are then associated with
a set of candidate thresholds θ to produce a sety of binary
split candidates for each split node.

We use two different geometric feature templates which
are generated from the set of facial feature points f(x)
aligned on image x with SDM [18]. The first geometric
feature template φ(1)a,b is the distance between feature points
fa and fb, normalized w.r.t. inter-ocular distance iod(f) for
scale invariance (Equation 1).

φ
(1)
a,b(x) =

||fa − fb||2
iod(f)

(1)

Because any information relative to orientation is dis-
carded in φ(1), we also use the angles between feature points
fa, fb and fc as a second geometric feature φ(2)a,b,c,λ. In order
to ensure continuity for angles around 0, we use the cosine
and sine instead of the raw angle value. Thus, φ(2) outputs
either the cosine or sine of angle ̂fafbfc, depending on the
value of a boolean parameter λ (Equation (2)):

φ
(2)
a,b,c,λ(x) = λ cos( ̂fafbfc) + (1− λ) sin( ̂fafbfc) (2)

As for appearance features, we use Histogram of Oriented
Gradients (HOG) for their descriptive power and robustness
to illumination changes. To allow fast HOG feature extrac-
tion, we use pre-computed integral channels as discussed in
[20]. First, images are rescaled to a constant size of 250×250
pixels. Then, we compute horizontal and vertical gradients
on the image and use these to generate 9 feature maps,
the first one containing the gradient magnitude, and the 8
remaining correspond to a 8-bin quantization of the gradient
orientation. Then, integral images are computed from these
feature maps. From here, we define the appearance feature
template φ

(3)
τ,ch,s,α,β,γ as an integral histogram computed

over channel ch within a window of size s normalized by
inter-ocular distance. Such histogram is evaluated at a point
defined by its barycentric coordinates α, β and γ within a
triangle τ defined over feature points f(x). Also, we store
the gradient magnitude in the first channel to normalize the
histograms. Thus, HOG features can be computed with only
4 access to the integral channels (plus normalization).

B. The random forest framework

Random Forests (RFs) is a popular learning framework
introduced in [21]. It has been ubiquitously used in computer
vision as they are suited to handle very high-dimensional
data (such as images) and can be easily parallelized for fast
training and evaluation.

A RF is traditionally built from the combination of T
decision trees grown by only examining a subset of the
whole feature pool (random subspace), and using data boot-
straps sampled from the whole training dataset (bagging).
In our case, we use bootstraps generated at the level of
subject IDs, which allows extra tree randomization as well
as faster evaluation using out-of-bag error estimate [22].
Formally, a tree can be defined recursively as either a split or
a leaf node. Split nodes contains information about a binary
split function which consists in a feature and an associated
threshold.

During training, split nodes are set using a greedy proce-
dure. For each node n. We denote l(n) and r(n) the left and
right subtrees associated with node n. xn, xl(n) and xr(n)
with class labels yn, yl(n) and yr(n) ∈ Y denote the data at
node n, l(n) and r(n), respectively. At node n we generate
k(i) binary feature candidates for each template φ(i).

For each candidate φ and threshold θ we compute the
information gain induced by this candidate, defined as:

G(yn, yl(n), yr(n)) = H(yn)−H(yl(n))−H(yr(n)) (3)

Then, we select the “best” binary feature φn among
all features from the different templates, i.e. the one that
minimizes the impurity criterion H , and use it to set a split
at node n. Then, those steps are recursively applied for the
left and right subtrees with accordingly routed data until
the label distribution at each node is homogeneous, where a
leaf node is set. Depending on the purpose of the predictive
model (e.g. classification or regression), the nature of the
impurity criterion H and the nature of data stored in leave
nodes vary. In our case, we use Shannon’s entropy as the
impurity criterion. Thus, at node n we have:

H(yn) = −m
Y∑
y=1

card(yn = y)

m
log(

card(yn = y)

m
) (4)

Where m denotes the number of training examples at node
n and card(yn = y) the number of elements with label y.
Moreover, as it is also classical in the literature covering
RFs, the leave nodes contains the class distributions. During
evaluation, an image x is successively routed left or right of
each tree according to the outputs of the binary tests, until
it reaches a leaf node. Each tree t thus returns the class
distribution pt(y|x). The output prediction ŷ is thus given
by averaging among the T trees of the forest:

ŷ = argmaxy
1

T

T∑
t=1

pt(y|x) (5)

Note that given the highly skewed label distribution
showed in Table II, balancing the dataset to train the
classifiers is essential. For that matter, we apply class-wise
downsampling of the bootstraps prior to learning each tree.



As indicated in [23], downsampling leads to similar results
compared to other alternatives (e.g. oversampling or class
weighting), with a significantly reduced runtime.

IV. VALIDATION OF THE FE RECOGNITION MODULE

A. Experimental setup

We train 4-class RF models with classes neutral, happi-
ness, anger and sadness on JEMImE-Paris, JEMImE-Nice
and JEMImE-All databases. Trees are trained by generating
20 distances features, 20 angles and 80 randomly samples
HOG for each split node, with 25 thresholds per candidate
feature. We grow 500 trees with a maximum depth of 16
without early stopping. RFs are evaluated using the Out-Of-
Bag (OOB) error estimate [21]. More specifically, bootstraps
for individual trees of both static and pairwise classifiers
are generated at the subject level. Thus, during evaluation,
each tree is applied only on subjects that were not used
for its training. The OOB error estimate is an unbiased
estimate of the true generalization error [21] which is
faster to compute than leave-one-subject-out or k-fold cross-
evaluation estimates. Also, it has been shown to be generally
more pessimistic than traditional error estimates [22], further
empathizing the quality of the proposed contributions. We
use the unweighted accuracy (trace of the confusion matrix)
as the evaluation metric.

B. FE recognition on JEMImE databases

In Table III we compare accuracies obtained by training
classification models on JEMImE-Paris database, and testing
on JEMImE-Nice, and vice-versa. Note however that the
two databases were collected using a similar protocol and
with the same sensors, so this benchmark does not exactly
mimic a cross-database scenario. However, it provides some
insight on the generalization capacities of predictive models
in slightly different contexts - luminosity, as well as cultural
discrepancies.

Table III
TEST ON JEMIME (% ACCURACY)

Train-test JEMImE-Paris JEMImE-Nice JEMImE-All
JEMImE-Paris 78.4 74.6 75.6
JEMImE-Nice 79.6 82.2 81.7
JEMImE-All 81.3 82.1 81.9

Models trained on JEMImE-Paris does not generalize very
well on JEMImE-NICE database, and therefore does pretty
bad on the concatenated dataset JEMImE-All. Interestingly,
we still observe a drop in performance when training on
JEMImE-Nice and testing on JEMImE-Paris, so this can
not be only attributed to the lower number of examples in
JEMImE-Paris database.

Table IV presents the per-FE classification scores on
JEMImE-All database, along with the average accuracy
among the FE classes. As one can see, the classifiers

Table IV
CLASSIFICATION OF FACIAL EXPRESSIONS ON JEMIME-ALL (%

ACCURACY)

Train Neutral Happiness Anger Sadness Avg.
JEMImE-Paris 87.3 92.6 78.6 43.9 75.6
JEMImE-Nice 84.2 89.1 85.7 67.9 81.7
JEMImE-All 86.4 91.2 83.9 65.9 81.9

Table V
CONFUSION MATRIX FOR TRAINING/TESTING CLASSIFIERS ON

JEMIME-ALL DATABASE

Neutral Happiness Anger Sadness
Neutral 86.4 2.8 6.9 3.8

Happiness 4.4 91.2 2.1 2.3
Anger 5.5 4.5 83.9 3.0

Sadness 12.6 8.9 12.6 65.9

have different biases, as the model trained on JEMImE-
Paris output better accuracies for neutral and happiness
classes, with very poor performance for sadness. Indeed,
sadness is the more subtle FE and we believe the low
number of examples does not allow to efficiently capture
the variability to describe this class. This is confirmed by
the accuracies outputted by the models trained on JEMImE-
Nice and JEMImE-All that allows more satisfying accuracies
for anger and sadness. Table V shows the confusion matrix
obtained for the best overall model, trained on JEMImE-
All. Due to the sheer subtlety and variability of the FEs,
anger is frequently misclassified as neutral and sadness is
confounded with either anger or neutral.

As such, the accuracies are already satisfying for dis-
criminating childrens’ FEs. Interesting directions for further
improvement of the FE recognition module will include
multimodal fusion of 2D and depth information, inclusion
of FE temporality and head pose handling [24], as well as
the handling of occasional occlusions [25]. Finally, we might
want to directly predict the FE quality on a continuous scale,
by applying regression models.

V. DESIGNING THE GAME

Based on the FE recognition module described in Section
III, we have designed a video game environment to teach
children how to produce adequate FE according to a social
context. As in JeSTIMULE [15], the game is divided into
2 main phases that will be described in this section: the
training (Section V-A) and playing phases (Section V-B), of
gradual difficulty.

A. The training phase

During this first phase, children are trained to produce
emotions by two ways: either they mimic an avatar display-
ing a specific emotion (Fig. 2), or they have to produce
an emotion on request (Fig. 3). This visual support can
be accompanied by background images with an emotional



Figure 2. illustration of the imitation task

Figure 3. illustration of the FE-on request task for FE happiness

content (e.g. a boy with a flat soccer ball which shall induce
the FE sadness, see Fig. 4).

Children then have to produce the FE themselves. As
visual feedback, children see both their own face and a set of
colored gauges displaying how well each FE is recognized
by the algorithm in real time. Children can then adapt their
production in order to maximize the score of the FE they
have to display (Which is related to the output probabilities
outputted by the RF predictors described in Section III - see
Fig. 5). Each time the FE is correctly displayed by children
in the allotted time (i.e. if they can hold the score related
to the requested FE above a threshold for a certain time
frame), they win a virtual coin. The whole level is validated
if the child is able to correctly produce a certain proportion
of each FE.

B. The playing phase

During this second phase, the child controls an avatar in
a virtual world (Fig. 6). In this world, the child is facing
social scenarios. He will have to put into practice what he
has learned in the first phase and produce the expected FE
for each given social scenario. For example, in the situation
depicted in Fig. 6, top-right corner, virtual characters playing
soccer are asking if the child wants the ball. If he agrees,
one of the following two scenarios randomly happens. Either
one of the character gives the ball to the child as in Fig. 6,
bottom-left corner (in that case the child has to produce the
FE happiness) or the character tells him that the ball is not
for him (Fig. 6, bottom-right). In this latter scenario, either
anger or sadness are accepted as appropriate FEs. The child

Figure 4. Example of background image used to elicit FE sadness

Figure 5. Example of feedback for FE happiness. Notice that the yellow
gauge below the video widget is very high, indicating that FE happiness is
well portrayed.

wins a reward if the adequate FE is correctly produced (the
threshold used to decide if a FE is correctly produced is
customized according to the progress of the child).

DISCUSSION AND CONCLUSION

In this paper, we introduce JEMImE, a serious game
to allow children with ASD to learn how to produce FEs
adequately, in response to a specific social context. The
game is based on a FE recognition module that consists of a
machine learning model trained on a large corpus of children
portraying the 4 FEs. We conduct experimental validation to
measure the accuracy of FE predictive models, and integrate
these into multiple scenarios of gradual difficulty to allow
the children to smoothly learn how to produce the FEs.
These multiple playing phases are wrapped into colored and
beautiful graphics to create the incentive to play the game.

Future developments involve improving the FE recogni-
tion module, which include using multimodal information
(depth information in addition to the RGB video stream),
increasing robustness to head pose and partial occlusions,
and using spatio-temporal information to improve the ac-
curacy of the predictive models. We will also try to model
the FE quality information on a continuous scale by using
regression models. Last but not least, we will conduct studies
to evaluate the impact of the game on children with ASD.



Figure 6. Illustrations of the playing phase. Top-left corner: the virtual world in which the child can interact. Top-right, bottom-left and bottom-right
corners illustrate an instance of scenario designed to elicit emotions.
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and G. Bird, “Can neurotypical individuals read autistic
facial expressions? atypical production of emotional facial
expressions in autism spectrum disorders,” Autism Research,
vol. 9, no. 2, pp. 262–271, 2016.

[15] S. Serret, S. Hun, G. Iakimova, J. Lozada, M. Anastassova,
A. Santos, S. Vesperini, and F. Askenazy, “Facing the chal-
lenge of teaching emotions to individuals with low- and high-
functioning autism using a new serious game: a pilot study,”
Molecular Autism, vol. 5, no. 1, p. 37, Jul 2014.

[16] C. Grossard, S. Hun, S. Serret, O. Grynszpan, P. Foulon,
A. Dapogny, K. Bailly, L. Chaby, and D. Cohen, “Rducation
de lexpression motionnelle chez lenfant avec trouble du spec-
tre autistiquegrce aux supports numriques: le projet jemime,”
Neuropsychiatrie de l’Enfance et de l’Adolescence, vol. 65,
no. 1, pp. 21 – 32, 2017.

[17] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Conference on Computer
Vision and Pattern Recognition, vol. 1, 2001, pp. 511–518.

[18] X. Xiong and F. De la Torre, “Supervised descent method
and its applications to face alignment,” in International Con-
ference on Computer Vision and Pattern Recognition, 2013,
pp. 532–539.

[19] A. Dapogny, K. Bailly, and S. Dubuisson, “Pairwise con-
ditional random forests for facial expression recognition,”
International Conference on Computer Vision, pp. 1–9, 2015.

[20] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel
features,” in British Machine Vision Conference, 2009.

[21] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[22] T. Bylander, “Estimating generalization error on two-class
datasets using out-of-bag estimates,” Machine Learning,
vol. 48, no. 1-3, pp. 287–297, 2002.

[23] C. Chen, A. Liaw, and L. Breiman, “Using random forest
to learn imbalanced data,” University of California, Berkeley,
2004.

[24] A. Dapogny, K. Bailly, and S. Dubuisson, “Dynamic pose-
robust facial expression recognition by multi-view pairwise
conditional random forests,” IEEE Transactions on Affective
Computing, 2017.

[25] ——, “Confidence-weighted local expression predictions for
occlusion handling in expression recognition and action unit
detection,” International Journal of Computer Vision, 2017.


